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Abstract

A normal impact of a three-dimensional rigid conical impactor penetrating into a layered shield is studied using a
simpli®ed model for an impactor±shield interaction. The shield consists of adjacent plates manufactured from one of

two possible materials, and the total thickness of the plates manufactured from every material is given. It is found that
advancing any plate inside a shield in the direction of penetration causes a monotone change in the ballistic limit
velocity. A criterion for increasing or decreasing of the ballistic limit velocity, which depends on the properties of the

materials of the layers in the shield, is determined. A maximum ballistic limit velocity is attained for a two-layered
shield without alternating the plates manufactured from di�erent materials. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Analysis of research on sub-ordnance penetration and perforation of non-homogeneous (layered)
shields can be found in the review by Corbett et al. (1996) and in the monograph by Arbate (1998)
which can be supplemented by several recent publications (Almohandes et al., 1996; Ben-Dor et al.,
1997a, 1998a; Gupta and Madhu, 1997; Mileiko et al., 1994; Nixdor�, 1987; Weidemaier et al., 1993). A
number of studies are concerned directly with the optimization of multi-layered shields (e.g., Aptukov et
al., 1992; Hetherington, 1992; Shupikov et al., 1996; Wang and Lu, 1996).

A conclusion can be made that only using simpli®ed models allows us to analytically determine the
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laws which can be applied for further theoretical and experimental investigations. The localized
impactor±shield interaction approach (Bunimovich and Dubinsky, 1995; Recht, 1990) was demonstrated
to have some advantages in this respect when applied to the problems of penetration mechanics (Ben-
Dor et al., 1997a, 1997b, 1998a, 1998b, 1998c; Ostapenko et al., 1994; Ostapenko and Yakunina, 1997;
Vedernikov and Shchepanovsky, 1995). Aptukov et al. (1992) used localized interaction models in
determining minimum weight inhomogeneous shields using two basic approaches, continuous and
discrete. In the ®rst approach, it was assumed that density is the only parameter which determines the
mechanical properties of the material of a shield, and Pontryagin's Maximum Principle was used to
determine the optimum distribution of density in the shield. In the second approach, a shield was
considered to be assembled from layers manufactured from a given set of materials which were
characterized by several independent parameters, and special variational techniques were used. When an
impactor reached the rear surface of a shield, a shield was considered perforated, and the initial stage of
the penetration into a shield was not considered.

In this study, we also use a localized model for impactor±shield interaction and consider all stages of
impactor±shield interaction, i.e., not only the stage when an impactor is immersed into a shield but also
the initial penetration stage and a stage when an impactor emerges from a shield. The problem is posed
as follows: There are two materials with di�erent properties which can be used for manufacturing the
plates in a multi-layered shield. The total thicknesses of the plates made of each material are given. The
goal is to determine the structure of the target (the order and the thicknesses of the plates from di�erent
materials) that provides the maximum ballistic limit velocity of the shield against a normal impact by a

Fig. 1. Coordinates and notations.
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conical impactor. In this study, we not only ®nd the solution to the latter problem without using
cumbersome methods of the optimal control theory or nonlinear programming but also rigorously prove
that the determined solution is optimum.

In this study, we assume that the impactor±shield interaction at a given location at the surface of the
impactor which is in contact with the shield can be described by the following equation:

d ~F � �rO�u�v2 � s�~n0 dS, u � cos b � ÿ~v0 � ~n0, �1�
where d ~F is the force acting at the surface element dS of the impactor along the inner normal vector ~n

0

at a given location at the surface of the impactor, ~v
0
is the unit local velocity vector, b is the angle

between the vector ~n
0
and the vector �ÿ~v0�. Eq. (1) with constant parameters r and s, together with an

equation, O(u )=u 2, comprise the most widely used phenomenological models for describing the
interactions of impactors with homogenous shields manufactured from ductile and some other materials
(for details, see e.g. Bunimovich and Dubinsky, 1995; Forrestal et al., 1988, 1990; Nishivaki, 1951;
Recht, 1990; Vitman and Stepanov, 1959) where r and s are usually the density and distortion pressure,
respectively. In the case of a multi-layered shield, the values of these parameters are determined by the
properties of the material of that plate which is in contact with the impactor, and it is assumed that the
adjacent layers in the shield do not interact.

Since, according to the employed model, several adjacent plates made from the same material and a
single plate with the same total thickness and the same material are equivalent, without the loss of
generality we may consider the shields as consisting of alternating plates manufactured from two materials.
The notations are shown in Fig. 1. The coordinate h is de®ned as the distance from the nose of the
impactor to the front surface of the target; the coordinate x is associated with the target. The plates made
from the ®rst material are located between the sections x=x2i + 1 and x=x2i + 2 (i= 0, 1,..., N ), the

Fig. 2. Scheme of the impactor±shield contact area.
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plates made from the second material are located between the sections x=x2i and x=x2i + 1 (i = 1,...,
N ) where x1=0, x2N + 2=b, b is the thickness of the shield, the total number of plates is 2N + 1.

We assume that the shape of the impactor is such that the total force acting on it is directed along the
h-axis. Only the nose of the impactor, with length L, interacts with the shield and the impactor may
have also a cylindrical part. The part of the lateral surface of the impactor between the cross-sections
x=x1 and x=x2 (see Fig. 1) interacts with some plate of the shield where (for details, see Ben-Dor et
al., 1997b, 1998b)

�x1� �h � �
�
0 if 0R �hR �b
�h ÿ �b if �bR �hR �b � 1

, �x2� �h� �
�

�h if 0R �hR1
1 if �bR �hR �b � 1

�2�

and �x1 � x 1

L , �x2 � x 2

L , �h � h
L ,

�b � b
L .

Since the shield consists of di�erent plates, the parameters r and s are functions of the coordinate
�x � x

L ,

a��x � �
�
a� if �x2i�1R�xR�x2i�2, i � 0,1, . . . ,N
a� if �x2iR�xR�x2i�1, i � 1,2, . . . ,N

�3�

and a=r,s. Fig. 2 shows (in coordinates h,x ) a domain of interaction of an impactor with a shield and
sub-domains where an impactor interacts with separate layers in the shield. Hereafter, the parameters
associated with the plates manufactured from the ®rst and second materials are denoted with subscripts
+ and �, respectively.

The equation of the conical nose part of the impactor can be represented as r � R0 �xZ�y�, where R0 is
the characteristic size of the base of the impactor, �x � x

L , Z(y ) is the function determining the cross-
sectional contour of the impactor, 0 < Z(y ) R 1, 0 R y R 2p. Since the total force ~F is determined by
integrating the local force over the impactor±target contact surface S, the expression for the drag force
D can be written as follows:

D � ~F � �ÿv0� �
� �

S

�r�x�O�u�v2 � s�x��u dS

� t2
�x 2�h�

x 1�h�

�2p
0

�r� �h ÿ �x �O�u�v2 � s� �h ÿ �x ��xZ2 dx dy, �4�

where

u � u�y� � tZ2���������������������������������
Z2�tZ2 � 1� � Z2y

q , t � R0

L
, Zy �

dZ
dy
: �5�

Using Eq. (4) and dimensionless variables, the equation of motion of the impactor, M d2h/dt 2=ÿD,
can be rewritten as follows:

dv2

d �h
� fr� �h �v2 � fs� �h � � 0, �6�

where the variable v is considered as a function of h, the mass of the impactor M is expressed through
its volume V, density g and a parameter KM which takes into account the contribution of the cylindrical
part of the impactor to its mass and volume (for an impactor without a cylindrical part, KM=1),
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fs � cs

�x 2� �h �

x 1� �h �
�xs� �h ÿ �x �d �x , fr � cr

�x 2� �h �

x 1� �h �
�xr� �h ÿ �x �d �x , �7�

cs � 12

gKM
, cr � cs

c
, c �

�2p
0

Z2 dy

,�2p
0

Z2O dy: �8�

Eq. (6) allows us to determine the ballistic limit velocity, v� � ������
w�
p

, which is de®ned as the initial
velocity of the impactor required for its nose to emerge from the target with a zero velocity. Let v� �h � be
a linear solution of a di�erential equation in v 2 Eq. (6) with an initial condition v� �b � 1� � 0. Then v� �������
w�
p � v�0� and it can be shown that

w� �
� �b�1

0

fs� �h �exp

"� �h

0

fr� �H �d �H

#
d �h : �9�

Our goal is to determine �x2, �x3, . . . , �x2N�1 that provide a maximum w� under the following conditions:

0 � �x1R�x2R�x3R . . . R�x2NR�x2N�1R�x2N�2 � �b � �B� � �B�, �10�

XN
i�0

ÿ
�x2i�2 ÿ �x2i�1

�
� �B�,

XN
i�1

ÿ
�x2i�1 ÿ �x2i

�
� �B�, �11�

where �B� � B�
L , �B� � B�

L and B+, B� are the given total thicknesses of the plates manufactured of
material `+' and ` � ', respectively.

2. An optimum shield

Let us introduce the function

�x0� �h � �

8><>:
0 if �hR0
�h if 0R �hR1
1 if �hr1

�12�

Then, functions fs and fr can be represented in the following form:

fa� �h � � ca

24a� XN
i�0

� �x 0� �hÿ�x 2i�1�
�x 0� �hÿ�x 2i�2�

�x d �x � a�
XN
i�1

� �x 0� �hÿ�x 2i �
�x 0� �hÿ�x 2i�1 �

�x d �x

35
� ca

(
a�
XN
i�0

�
j
ÿ

�h ÿ �x2i�1
�
ÿ j

ÿ
�h ÿ �x2i�2

��
� a�

XN
i�1

h
j
ÿ

�h ÿ �x2i

�
ÿ j

ÿ
�h ÿ �x2i�1

�i)

� ca
�
a�c� �h � � �a� ÿ a��C� �h �

�
, �13�

where a=r,s,

j�z� �
� �x 0�z�

0

�x d �x � 0:5
�

�x0�z�
�2
, �14�

G. Ben-Dor et al. / International Journal of Solids and Structures 37 (2000) 687±696 691



c�z� � j�z� ÿ j�zÿ �b �, C�z� �
XN
i�1

h
j
ÿ
zÿ �x2i

�
ÿ j

ÿ
zÿ �x2i�1

�i
: �15�

Case. r+=r�=r. Using Eqs. (13)±(15), one can rewrite Eq. (9) as follows:

w� � cs

� �b�1

0

d �h
�
s�c� �h � � cs�s� ÿ s��Î

�
, �16�

where

Î �
� �b�1

0

d �hC� �h�exp

"
crr

� �h

0

c� �H �d �H

#
�
� �b�1

0

d �h exp

"
crr

� �h

0

c� �H �d �H

#XN
i�1

� �x 0� �hÿ�x 2i�
�x 0� �hÿ�x 2i�1 �

�x d �x : �17�

Changing the order of integration after some algebra, we obtain:

Î �
�1
0

�x d �x
XN
i�1

� �x��x 2i�1

�x��x 2i

d �h exp

"
crr

� �h

0

c� �H �d �H

#

�
�1
0

�x d �x
XN
i�1

� �x� �D i

�x

d �h exp

"
crr

� �h��x 2i

0

c� �H �d �H

#
, �18�

where �D i � �x2i�1 ÿ �x2i is the thickness of the plate with the number i among the plates manufactured
from the second material. Eq. (16) shows that only IÃ depends on xj.

Assume that all �D i take any values for which the second of Eq. (11) is valid. Then Eq. (18) implies that IÃ

is an increasing function of �x2i for every �x2i. A minimum value of IÃ is attained when [see Fig. 3(b)]

x2N � bÿ �DN, x2�Nÿ1� � bÿ �DN ÿ �DNÿ1, . . . ,�x2 � �b ÿ
X1
i�N

�D i �19�

and a maximum value of IÃ is attained when [see Fig. 3(a)]

Fig. 3. (a,b). Structure of the optimum shield.
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�x2 � 0, �x4 � �D1, . . . ,�x2N �
XN
i�1

�D i: �20�

Thus, a minimum (maximum) value of IÃ is obtained when the plates manufactured from the same
material are located sequentially and are combined into a single plate, regardless of the initial choice of
�D i and of the number of layers N. Thus, we found points of extrema of IÃ taking into account the
variation of all xj and N.

Eq. (16) and the results of the above analysis imply that the maximum ballistic limit velocity is
obtained when the target consists of just two plates: if s+ < s�, then the front plate must be the plate
manufactured from material `+' with a thickness B+, and the rear plate must be the plate
manufactured from material ` � ' with a thickness B�. If s+ > s�, then the reverse order of these plates
is optimal. Thus, the front plate must always have a lesser value of s.

There are interesting additional conclusion which can be obtained from the above analysis. Placing
any plate with a larger (smaller) value of a parameter s inside the multi-layered target in the direction of
penetration yields an increase (decrease) of the ballistic limit velocity.

Case. r+$r�. Using Eqs. (13)±(15), we can rewrite Eq. (9) in the following form:

w� � c

� �b�1

0

d �h

"
s�
r�

G� �h �dF�
�h �

d �h
� s� ÿ s�

r� ÿ r�
F� �h �dG�

�h �
d �h

#
, �21�

where

F� �h� � exp

"
crr�

� �h

0

c� �H �d �H

#
, G� �h� � exp

"
cr�r� ÿ r��

� �h

0

C� �H �d �H

#
: �22�

After integrating the second term in the integral in Eq. (14) by parts, we obtain:

w� � m0I0 � m1I1, �23�
where

m0 � c
s� ÿ s�
r� ÿ r�

, m1 � cr��w� ÿ w��, w� �
s�
r�

, w� �
s�
r�

, �24�

I0 � �F� �h �G� �h �� �h� �b�1
�h�0 � exp�J1 � J2� ÿ 1, �25�

J1
crr�

�
� �b�1

0

�j� �H � ÿ j� �H ÿ �b��d �H �
� �b�1

0

d �H

� �x 0� �H �

�x 0� �Hÿ �b �
�X d �X �

�1
0

�X d �X

� �X� �b

�X

d �H �
�b

2
, �26�

J2
cr�r� ÿ r��

�
� �b�1

0

h
j
ÿ

�H ÿ �x2i

�
ÿ j

ÿ
�H ÿ �x2i�1

�i
d �H �

� �b�1

0

d �H
XN
i�1

� �x 0� �Hÿ�x 2i�
�x 0� �Hÿ�x 2i�1�

�X d �X

�
�1
0

�X d �X
XN
i�1

� �X��x 2i�1

�X��x 2i

d �H � 1

2

XN
i�1

ÿ
�x2i�1 ÿ �x2i

�
�

�B�
2

, �27�
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I1 � 1

r� ÿ r�

� �b�1

0

d �h
dF

d �h
exp

h
cr�r� ÿ r��Ĵ� �h�

i
, Ĵ� �h � �

� �h

0

C� �H �d �H : �28�

Eqs. (25)±(27) imply that

I0 � exp

�
cr
2

h
r� �b � �r� ÿ r�� �B�

i�
ÿ 1 � exp

�
cr
2

ÿ
r� �B� � r� �B�

��ÿ 1: �29�

Thus, I0 does not depend on the order and on the thicknesses of the plates in the target.
Let us transform the integral Ĵ:

Ĵ �
XN
i�1

"� �h

0

h
j
ÿ

�H ÿ �x2i

�
ÿ j

ÿ
�H ÿ �x2i�1

�i
d �H

#

�
XN
i�1

"� �h

�x 2i

j
ÿ

�H ÿ �x2i

�
d �H ÿ

� �h

�x 2i�1
j
ÿ

�H ÿ �x2i�1
�
d �H

#

�
XN
i�1

"� �hÿ�x 2i

0

j� �H �d �H ÿ
� �hÿ�x 2i�1

0

j� �H �d �H

#
�
XN
i�1

� �hÿ�x 2i

�hÿ�x 2i�1
j� �H �d �H

�
XN
i�1

j
ÿ

�H � �h ÿ �x2i ÿ Di

�
d �H : �30�

The further analysis is similar for the case r+=r�. Since j is a non-decreasing function, Ĵ is a non-
increasing function of �x2i for every �x2i. Thus, I1 is an increasing function of �x2i. Using Eq. (23), we
conclude that the maximum ballistic limit velocity is obtained when the shield consists of two plates.
When w+ < w�, then the front plate must be the plate manufactured from material `+' with a thickness
B+, and the rear plate must be the plate manufactured from material ` � ' with a thickness B� [see Fig.
3(a)]. When w+ > w�, then the reverse order of these plates is optimal [see Fig. 3(b)]. If w+=w�, the
ballistic limit velocity does not depend on the order of the plates in the target. Relocation of any plate
with a larger (smaller) value of the parameter w inside the shield in the direction of penetration yields an
increase (decrease) of the ballistic limit velocity.

Table 1

Experimental results by Radin and Goldsmith (1988)

No. of experiment, i Structure of a target x�i �2 x�i �3 x�i �4 x�i �5 x�i �6 w�i �� B+, B�, D1, D2

1 1.6AL±11.7LEÿ1.6AL 0 1.6 13.3 14.9 14.9 201.3 B+=11.7, B�=3.2, D1=D2=1.6

2 3.2AL±11.7LE 0 1.6 1.6 3.2 14.9 213

3 11.7LE±3.2AL 11.7 13.3 14.9 14.9 14.9 190.6

4 1.6AL±3.2LE±1.6AL 0 1.6 4.8 6.4 6.4 127.5 B+=B�=3.2, D1=D2=1.6

5 3.2AL±3.2LE 0 1.6 1.6 3.2 6.4 125.7 B+=B�=3.2, D1=D2=1.6

6 3.2AL±8.6LE 0 3.2 11.8 Ð Ð 186.7 B+=8.6, B�=3.2, D1=3.2

7 8.6LE±3.2AL 8.6 11.8 11.8 Ð Ð 171.4
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3. Comparison with the experimental data

Among the published experimental data on ballistic penetration of conical impactors into multi-
layered shields consisting of plates manufactured from di�erent materials, we did not ®nd appropriate
data sets for comparison with the results obtained above. Therefore, we had to restrict ourselves to the
data reported by Radin and Goldsmith (1988) for the shields consisting of plates manufactured from
Lexan and Aluminum. The validity of the model Eq. (1) for Lexan was not studied. Therefore, the
further analysis serves only to illustrate the obtained results, although they also proved to be valid in
this case. Thus, it is conceivable to suggest that Eq. (1) can serve as a good approximation for a wider
class of materials, although the coe�cients of such approximation cannot always be expressed through
the known parameters of the materials.

In a study by Radin and Goldsmith (1988), the ballistic limit velocities for 60-grad conical-nosed
projectile penetrating into adjacent layered targets composed of di�erent materials (2024-0 aluminum
and Lexan) are investigated. The experiments that are relevant to our study are summarized in Table 1,
where the data are presented using the notations of the present study. Subscripts `+' and ` � ' denote
Lexan and aluminum, respectively; all sizes are given in mm, the ballistic limit velocity is given in m/s;
the notation 1.6AL±11.7LE±1.6AL denotes 11.7 mm thick Lexan plate sandwiches between two 1.6 mm
thick aluminum plates, etc., superscript denotes the number of the experiment. Three series of
experiments have been found such that each of the series can be characterized by constants B+, B�, Di

and N. The results of the analysis are presented in Table 2. If one selects s as a yield stress parameter
(s+=172 MPa and s�=270 MPa, Radin and Goldsmith, 1988), r+=1290 kg/m3 and r�=2765 kg/m3.
Then w+ > w�, and the theory predicts that in every series of experiments, the ballistic limit velocity
must decrease with an increase of x2i. Table 2 shows that this prediction is supported by the
experimental results when the di�erence between the ballistic limit velocities of the compared target is
relatively large. The only exception is the case when experiments 4 and 5 are compared, where the
di�erence of the ballistic limit velocities is about 1.5%.

4. Concluding remarks

Ballistic properties of multi-layered targets are studied when the target consists of adjacent non
interacting plates manufactured from one of the two possible materials and the total thicknesses of the
plates manufactured from every material is ®xed. It is found that the displacement of any plate inside
the target in the direction of the penetration yields a monotone change in the ballistic limit velocity, and
a criterion for the increase or decrease of the ballistic limit velocity which depends on the properties of
the materials is found. The performed analysis implies that the maximum ballistic limit velocity is
obtained for the two-layered target without alternating the plates manufactured from di�erent materials.

Table 2

Theoretical predictions

Compared experiments Conditions Prediction

1,2 x�1�2 � x�2�2 , x�1�4 > x�2�4 w�1�� < w�2��
2,3 x�2�2 < x�3�2 , x�2�4 < x�3�4 w�2�� > w�4��
4,5 x�4�2 � x�5�2 , x�4�4 > x�5�4 w�4�� < w�5��
6,7 x�6�2 < x�7�2 , x�6�4 > x�7�4 w�6�� > w�7��
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Notably, the obtained results are valid for various conical three-dimensional impactors, e.g. with
circular, elliptical or polygonal cross-sections.

Special purpose experiments are required for investigation and validation of the above ®ndings which
were obtained using simpli®ed models for the impactor±target interaction.
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